ZnWO4:Eu³⁺纳米棒的制备与荧光特性

樊 婷¹ 吕健滔²*

(¹佛山科学技术学院电子与信息工程学院,广东佛山 528000 ²佛山科学技术学院理学院,广东佛山 528000</sub>)

摘要 通过简单的水热法制备了单分散的 ZnWO4 和 ZnWO4: Eu^{3+} 纳米棒。用 X 射线衍射图谱和透射电镜分析了 材料的结构和形貌,所得纳米棒均为钨锰铁矿纯相,且 Eu^{3+} 离子完全进入晶格中。ZnWO4: Eu^{3+} 纳米棒的直径为 20~40 nm,长度为 50~70 nm。测试了 ZnWO4 和 ZnWO4: Eu^{3+} 的激发光谱和发射光谱,结果表明 WO4⁻ 基团可 以有效地转移能量至 Eu^{3+} 离子。ZnWO4: Eu^{3+} 的发射光谱表明, Eu^{3+} 离子的电偶极跃迁⁵D₀-⁷F₀ 的特征峰很弱, 而⁵D₀-⁷F₂ 的电偶极跃迁很强,表明 Eu^{3+} 离子处于晶体的低对称位置。

关键词 材料;水热法;钨酸锌;稀土离子;光致发光;能量转移

中图分类号 O482.31 文献标识码 A doi: 10.3788/AOS201333.0816003

Preparation and Photoluminescence Property of ZnWO₄:Eu³⁺ Nanorods

Fan Ting¹ Lü Jiantao²

¹ School of Electronics and Information Engineering, Foshan University, Foshan, Guangdong 528000, China ² School of Science, Foshan University, Foshan, Guangdong 528000, China

Abstract Monodisperse ZnWO₄ and Eu³⁺-doped ZnWO₄ nanorods are prepared via a simple hydrothermal method. The structure and morphology are characterized through X-ray diffraction pattern and transmission electron microscope. The nanorods are pure wolframite and Eu³⁺ ions completely enter into the lattice. The diameters of ZnWO₄ : Eu³⁺ nanorods are about 20 \sim 40 nm and the lengths are about 50 \sim 70 nm. The excited and photoluminescence spectra of ZnWO₄ and Eu³⁺-doped ZnWO₄ nanorods indicate an energy transfer from WO₄²⁻ groups to Eu³⁺ ions. Electric dipole transition ⁵D₀-⁷F₀ of Eu³⁺ ion is weak, while electric dipole transition ⁵D₀-⁷F₂ is very strong, which indicates that Eu³⁺ ions are in C₂ symmetry points of the lattice.

Key words materials; hydrothermal method; zinc tungstate; rare earth ion; photoluminescence; energy transfer OCIS codes 160.4670; 160.4760; 160.5690

1 引 言

ZnWO4 是一种具有钨锰铁矿结构的重要无机 材料^[1]。钨酸盐具有高能量密度和抗辐射特性,成 本也较低。ZnWO4 的发光效果比较稳定,发光范围 是 460 nm 附近很宽的蓝色发光带,可以用作闪烁 器材料、磁性材料、发光材料和光催化材料等,用途 非常广泛^[2-3]。

ZnWO₄的传统制备方法是高温固相法^[4],所得

的颗粒较大而且不均匀。溶胶凝胶法可以用来制备 纳米 ZnWO4 晶体^[5],然而这种方法需要较高的温 度和复杂的工艺处理。用水热法制备 ZnWO4 工艺 简单,温度低,而且产品颗粒均匀,杂相少^[6-7]。如 果掺杂稀土离子,利用水热法稀土离子可以在反应 过程中较好地进入晶格中^[8],制备出高质量的纳米 发光材料。目前将稀土离子掺杂在钨酸盐基质中的 研究受到了广泛关注,因为稀土离子可以改变钨酸

基金项目:广东省高校优秀青年创新人才培养计划(育苗工程)(2012LYM_0131)

* 通信联系人。E-mail: keentle@gmail.com

收稿日期: 2013-01-24; 收到修改稿日期: 2013-04-12

作者简介: 樊 婷(1982—),女,博士,助理研究员,主要从事稀土纳米发光材料的制备与光致发光特性等方面的研究。 E-mail: everting82@yahoo.com.cn

盐的物理和化学性质。例如将 Pr³⁺离子掺杂在 PbWO₄ 中发现了量子剪裁现象^[9];Er³⁺,Yb³⁺共掺 的 PbWO₄ 可以用作上转换发光材料^[10];Eu³⁺离子 掺杂的 ZnWO₄ 在紫外光的激发下可以产生钨酸根 的蓝色光谱,同时 WO²⁻离子的发射光谱可以将能 量转移到 Eu³⁺离子并发出红光^[8]。由于通过红、 绿、蓝三基色荧光粉的组合可以得到白光,所以紫外 光激发的红色荧光粉 ZnWO₄:Eu³⁺在白光发光二 极管(LED) 用发光粉材料中有潜在的应用价 值^[11-13]。

本文通过简单的水热法制备了纳米 ZnWO4 晶 体和掺 Eu³⁺ 的纳米 ZnWO4 晶体,X 射线衍射 (XRD)图谱表明所掺杂的 Eu³⁺离子完全进入晶格 中,透射电镜(TEM)图表明制备的纳米晶为均匀的 纳米棒,并能较好地分散开。通过研究掺杂与不掺 杂 Eu³⁺离子晶体的激光光谱和发射光谱,展现了 WO²⁻ 基团向 Eu³⁺离子能量转移的过程。

2 实验过程

ZnWO₄ 纳米晶体的制备过程如下:1 mmol 的 Zn(NO₃)₂•6H₂O溶于 10 mL 的去离子水中配成溶 液;1 mmol 的 Na₂WO₄•2H₂O溶于 20 mL 去离子 水中配成溶液;两份溶液在剧烈搅拌下混合均匀;用 稀的氨水溶液调节溶液的 pH 值为 7.0,并配成 37.5 mL溶液,继续搅拌 0.5 h;所得溶液倒入到 50 mL聚四氟乙烯内胆的高压釜中,密封后放入烘 箱中,在 180 ℃下反应 12 h;所得样品使用去离子水 洗涤三次并放入离心机中离心,最后将沉淀物分离出 来放入烘箱中,在 80 ℃下干燥 5 h。掺杂 5%(摩尔分 数,下同)Eu³⁺的 ZnWO₄:Eu³⁺纳米晶体的制备过程 同上,只是在配置溶液时另外加入 0.05 mmol 的 Eu(NO₃)₃水溶液。

样品的晶相纯度使用铜靶的飞利浦 PW1830 型号 X 射线衍射仪测试,所用电压为 40 kV,电流为 40 mA。样品的形貌通过 JEOLJEM-2010F 型号的 TEM 测试表征。激发和发射光谱通过 Jobin-Yvon Triax320 型号的光谱仪连接到 Hamamatsu R5108 光电倍增管进行测试。所有测试均在室温下进行。

3 结果与讨论

3.1 晶相和形貌分析

样品的 XRD 图谱如图 1 所示。图谱特征表明 实验制备的 ZnWO₄ 和 ZnWO₄:Eu³⁺ 晶体都是单斜 的钨锰铁矿纯相,与标准图谱 JCPDS No. 15-0774 完全符合。从图中可以看出,样品没有杂相产生,这 说明 Eu³⁺离子已经完全进入晶格中。

图 1 ZnWO₄ 和 ZnWO₄:Eu³⁺样品的 XRD 图谱

Fig. 1 XRD patterns of ZnWO₄ and ZnWO₄:Eu³⁺

图 2 的 TEM 图谱显示了 ZnWO₄:Eu³⁺样品的 形貌。从图中可以看出,制备的样品中虽然有少量 的纳米片存在,但是主要成纳米棒态,纳米棒的直径 为 20~40 nm,长度为 50~70 nm,样品较好地分散 开,基本没有聚集。

图 2 $ZnWO_4$: Eu^{3+} 样品的 TEM 图谱 Fig. 2 TEM pattern of $ZnWO_4$: Eu^{3+} sample

3.2 激发光谱和发射光谱

图 3 显示的是 ZnWO₄和 ZnWO₄:5% Eu³⁺分别 在 466 nm 和 613 nm 下测得的激发光谱。由图可见, ZnWO₄ 在 466 nm 的光监测下得到在 282 nm 附近的 较宽激发光谱,这是 WO²₄ 根的吸收谱带。ZnWO₄: 5% Eu³⁺在 613 nm 的光监测下测得 Eu³⁺离子位于 350~450 nm 之间的 4 个吸收带,从左到右分别对应 于⁷F₀-⁵D₄, ⁷F₀-⁵G₂, ⁷F₀-⁵L₆, ⁷F₀-⁵D₂ 的跃迁。另外还 有与前面 ZnWO₄ 很相似的 WO²₄ 根的吸收宽谱 带。利用 Eu³⁺离子的发射峰 613 nm 去监测 $ZnWO_4: Eu^{3+}$ 仍然可见 WO_4^{2-} 根的吸收峰,说明在 $ZnWO_4: 5\% Eu^{3+}$ 样品中存在 WO_4^{2-} 根到 Eu^{3+} 离 子的有效能量转移,并进一步证明 Eu^{3+} 离子成功地 取代了 Zn^{2+} 离子,进入 $ZnWO_4$ 的晶格中^[14]。

Fig. 3 Excitation spectra of 5% Eu³⁺-doped and pure ZnWO₄ detected at 613 nm and 466 nm respectively

图 4 显示的是 ZnWO₄ 和 ZnWO₄:5% Eu³⁺在 WO²⁻ 根的吸收峰 282 nm 光激发下测得的发射光 谱。由图可见,在 282 nm 的光激发下,ZnWO₄ 产 生位于 360~650 nm 的宽发射光谱带,最大峰值在 466 nm 处,这是 WO²⁻ 根的特征发光峰。同样在 282 nm 的光激发下,ZnWO₄:5% Eu³⁺除了产生 466 nm 附近 WO²⁻ 根的特征发光峰外,还测得 Eu³⁺离子的特征发光峰,最强的发光峰在 613 nm 处。从图中还可以看出,ZnWO₄ 在掺杂 5% Eu³⁺

离子后, WO_4^{2-} 根的发光峰强度有所减弱,这也说明 了 $ZnWO_4:5\% Eu^{3+}$ 纳米棒中存在 WO_4^{2-} 根到 Eu^{3+} 离子的能量转移。

 WO_4^{2-} 和 Eu³⁺之间的能量传递过程如图 5 所 示。在 WO_4⁻ 根的激发峰 282 nm 的激发下, ZnWO₄:Eu³⁺主要通过 WO_4⁻ 根基团吸收激发能, 被吸收的激发能转移到 Eu³⁺离子的高能级,即⁵D₀ 能级,然后辐射跃迁到它的低能级,即⁷F₀,⁷F₁和⁷F₂ 能级,发射出 Eu³⁺的特征红色光谱,从而实现了 WO₄⁻⁻ 根到 Eu³⁺离子的能量转移^[8]。

图 5 WO₄⁻ 和 Eu³⁺之间的能量传递图 Fig. 5 Diagram of energy transfer between WO₄²⁻ and Eu³⁺

图 6 显示的是 ZnWO₄:5% Eu³⁺分别在 WO₄²⁻ 根和 Eu³⁺离子的吸收峰,即 282 nm 和 393 nm 光激 发下得到的 Eu³⁺离子的特征发射光谱。两个光谱都 显示了 Eu³⁺离子位于 578、591、613 nm 的特征发光 峰,分别对应 Eu³⁺离子的⁵D₀-⁷F₀、⁵D₀-⁷F₁、⁵D₀-⁷F₂

图 6 ZnwO₄·5% Eu⁺ 在激发波长分别为 282 nm 和 393 nm 光激发下的发射光谱

Fig. 6 Photoluminescence spectra of ZnWO₄:5% Eu³⁺ excited at 282 nm and 393 nm

跃迁,这进一步证明了前文中能量转移的结论。从 图中可以看出,位于 613 nm 的⁵D₀-⁷F₂ 较强,而位 于 591 nm 的⁵D₀-⁷F₁ 跃迁较弱,说明在 ZnWO₄ 纳 米棒中 Eu³⁺离子位于晶体的低对称位置。这是因 为位于 591 nm 的 Eu³⁺离子的⁵D₀-⁷F₁ 跃迁属于磁 偶极跃迁,很难受到晶体场的影响,而位于 613 nm 的⁵D₀-⁷F₂ 跃迁属于电偶极跃迁,非常容易受 Eu³⁺ 离子周围化学环境的影响。根据图 6 的实验结果, 电偶极跃迁产生的光谱强度远大于磁偶极跃迁产生 的光谱强度。此外,根据稀土 Eu³⁺离子的光谱理 论,当 Eu³⁺离子位于晶体的高对称位置时磁偶极跃 迁⁵D₀-⁷F₁ 占优势,而当 Eu³⁺离子位于晶体的低对 称位置时电偶极跃迁⁵D₀-⁷F₂ 占优势^[15]。综上所 述,ZnWO₄:Eu³⁺纳米棒中的 Eu³⁺离子应该处于晶 体的低对称位置。

4 结 论

利用水热法制备了单晶分散的 ZnWO₄: Eu³⁺ 纳米棒,结构分析显示纳米棒是单斜的钨锰铁矿纯 相,且 Eu³⁺离子完全进入晶格中。利用 Eu³⁺离子 的发射峰 613 nm 去监测 ZnWO₄: Eu³⁺可见 WO²⁻ 根的 吸收峰,说明在 ZnWO₄: Eu³⁺样品中存在 WO²⁻ 根到 Eu³⁺离子的有效能量转移。用 WO²⁻ 根的 吸收峰 282 nm 去激发 ZnWO₄ 和 ZnWO²⁻ 根的 吸收峰 282 nm 去激发 ZnWO₄ 和 ZnWO²⁻ 根的 吸收峰 282 nm 去激发 ZnWO₄ 和 ZnWO²⁻ 根的 吸收峰 282 nm 去激发 ZnWO⁴ 和 ZnWO⁴ 家子后,WO²⁻ 根的发光峰强度有所减弱,这也证明了 所制备的材料中存在 WO²⁻ 根到 Eu³⁺离子的能量 转移。ZnWO⁴: Eu³⁺的发射光谱中电偶极 跃 迁⁵D₀-⁷F₂的发射峰较强,而磁偶极跃迁⁵D₀-⁷F₁的 发射峰较弱,说明在此发光材料中 Eu³⁺离子位于晶 体的低对称位置。

参考文献

1 Kobayashi M, Tsuchihashi Y, Narita S, *et al.*. Luminescence from uniform electron-hole liquid phase in silicon caused by extremely high excitation [J]. J Lumin, 1976, 12-13: 639-643.

2 Nediko S, Hizhnyi Y, Nikolaenko T. Calculations of the electronic transition energies in the system of luminescence centers of lead, cadmium and zinc tungstate crystals [J]. Phys

Status Solidi (c), 2005, 2(1): 481-484.

- 3 Fu H B, Pan C S, Zhang L W, *et al.*. Synthesis, characterizaton and photocatalytic properties of nanosized Bi₂WO₄, PbWO₄ and ZnWO₄ catalysts [J]. Mater Kes Bull, 2007, 42(4): 696-706.
- 4 Phani A R, Passacantando M, Lozzi L, *et al.*. Structural characterization of bulk ZnWO₄ prepared by solid state method [J]. J Mater Sci, 2000, 35(19); 4879-4883.
- 5 Bonanni M, Spanhel L, Lerch M, *et al.*. Conversion of colloidal ZnO-WO₃ heteroaggregates into strongly blue luminescing ZnWO₄ xerogels and films [J]. Chem Mater, 1998, 10(1): 304-310.
- 6 Zhang Q, Chen X, Zhou Y, et al.. Synthesis of ZnWO₄ @MWO₄ (M = Mn, Fe) core-shell nanorods with optical and antiferromagnetic property by oriented attachment mechanism [J]. J Phys Chem C, 2007, 111(10): 3927-3933.
- 7 Fu H B, Lin J, Zhang L W, et al.. Photocatalytic activities of a novel ZnWO₄ catalyst prepared by a hydrothermal process [J]. Appl Catal A-Gen, 2006, 306(7); 58-67.
- 8 Wen F, Zhao X, Huo H, et al.. Hydrothermal synthesis and photoluminescent properties of ZnWO₄ and Eu³⁺-doped ZnWO₄ [J]. Mater Lett, 2002, 55(3): 152–157.
- 9 T Dong, Z Li, Z Ding, et al.. Characterizations and properties of Eu³⁺-doped ZnWO₄ prepared via a facile self-propagating combustion method [J]. Mater Res Bull, 2008, 43(7): 1694-1701.
- 10 Dai Q, Song H, Ren X, et al.. Structure and upconversion luminescence of hydrothermal PbWO₄:Er³⁺, Yb³⁺ powders [J]. J Phys Chem C, 2008, 112(49): 19694-19698.

廖金生,邱 报,温和瑞,等.单分散球形 BaWO4:Tb³⁺绿色荧 光粉合成及光谱性能[J].光学学报,2010,30(3):839-843.

12 Bai Shengmao, Wang Jing, Miao Hongli, *et al.*. Luminescence properties of the Y_{3-x-y}Pr_xGd_yAl₅O₁₂Ce³⁺ phosphors for white light emitting diodes [J]. Acta Optica Sinica, 2010, 30(5): 1402-1405
白生茂, 王 晶, 苗洪利, 等. 用于白光 LED 的 Y_{3-x-y}

日主戊, 上 韻, 笛, 阳, 平, 所] 日 九 比 即 Π_{3-x-y} $\Pr_x Gd_y Al_5 O_{12} Ce^{3+}$ 荧光粉发光特性研究[J]. 光学学报, 2010, 30(5): 1402-1405.

- 13 Su Xingyu, Ju Haidong, Ye Renguang, *et al.*. Luminescence properties of CaSi₂N₂O₂: Eu²⁺ phosphors co-doped with Dy³⁺ or Gd³⁺[J]. Acta Optica Sinica, 2010, 30(3): 844-848 苏醒字, 鞠海东,叶仁广,等. Eu²⁺, Dy³⁺ (Gd³⁺) 共掺杂 CaSi₂N₂O₂ 荧光粉发光性质[J]. 光学学报, 2010, 30(3): 844-848
- 14 Jia P Y, Liu X M, Yu M, et al. Luminescence properties of solgel derived spherical SiO₂-Gd₂(WO₄)₃: Eu³⁺ particles with coreshell structure [J]. Chem Phys Lett, 2006, 424(4): 358-363.
- 15 Julián B, Planelles J, Cordoncillo E, et al.. Eu³⁺-doped CdS nanocrystals in SiO₂ matrices: one-pot sol-gel synthesis and optical characterization [J]. J Mater Chem, 2006, 16(47): 4612-4618.

栏目编辑:韩 峰